

Proton NMR study of the transmetallation of gadolinium complexes by zinc (II)

NMR Laboratory, Department of Organic Chemistry, University of Mons-Hainaut, Belgium S. Laurent, L. Vander Elst, F. Copoix and R.N. Muller

INTRODUCTION:

stability of these complexes is related to their thermodynamic constants, their selectivity (i.e. the selectivity of the ligand for the metal ion versus various endogenous metal ions) and their possible transmetallation by endogenous ions such as Zn^{2+} , Cu^{2+} or Ca^{2+} , a process which will induce a release of free gadolinium into the body and a depletion Paramagnetic gadolinium complexes like Gd-DTPA, Gd-DOTA, Gd-DTPA-BMA and Gd-HPDO3A are nowadays widely used as contrast agents in clinical Magnetic Resonance Imaging (MRI). At clinical doses, these molecules must be non toxic although their components (metal ion and free organic ligand) usually are. The in vivo the presence of Zn²⁺ ions. in the endogenous ion. This work focuses on the study, by proton relaxometry, of the transmetallation of several gadolinium complexes, potential contrast agents for MRI, in

$$Gd-L^{n-}+Zn^{2+}$$
 Zn-L⁽ⁿ⁺¹⁾⁻ + Gd^{3+} (L= ligand)

MATERIALS AND METHODS:

synthesized using GdCl₃ [2]. The measurements were performed by following R₁^p on a PC 20 Bruker spin analyzer Minispec (20 MHz) at 310K. Brechbiel et al [1]. The bisamide derivatives of DTPA were obtained by reaction of DTPA bisanhydride with corresponding amines in DMF solution and the complexes were (Milano, Italy). Gd-DTPA, Gd-EOB-DTPA and MS-325 were kindly provided by Schering AG (Berlin, Germany). Gd-C₄Bz-DTPA was synthesized as described by and 2.5 mM of ZnCl₂ buffered at pH 7 (phosphate buffer). Gd-DOTA and Gd-HPDO3A were respectively supplied by Guerbet (Aulnay-sous-Bois, France) and Bracco Spa The transmetallation was studied through the evolution of the paramagnetic relaxation rate of water protons (R₁^p) in a solution containing 2.5 mM of the gadolinium complex

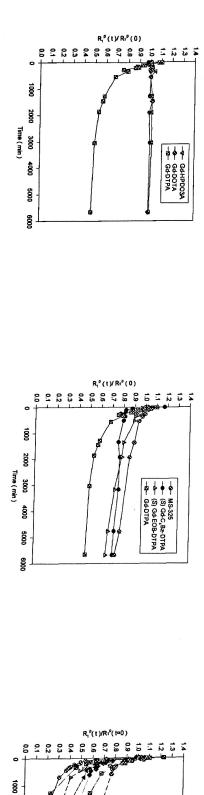
RESULTS AND DISCUSSION:

proton relaxation rate. Transmetallation is thus characterized by a decrease of the proton relaxation rate of the solvent Gadolinium ions released from the complex by transmetallation react with phosphate anions resulting in the formation of GdPO₄ which is insoluble and has no influence on the

Gd-DTPA-BA: R=NHCH₃
Gd-DTPA-BHA: R=NHCH₂
Gd-DTPA-BHA: R=NHCH₂CH(CH₃)₂
Gd-DTPA-BHA: R=NHCH₂CH₃
Gd-DTPA-BCHA: R=NHCyclohexyl
Gd-DTPA-BBMA: R=N(CH₃)₂

Figure 1 Figure II Figure III

MS-325: $R = CH_2OPOH$


of R₁ at 5000 minutes (83 hours) over R₁ at time zero shows that more than 98% of the paramagnetic relaxation rate is retained for both Gd-HP-DO3A and Gd-DOTA The steadiness of the proton relaxation rate of solutions containing the macrocyclic complexes Gd-DOTA and Gd-HPDO3A (figure I) confirms their high stability. The ratio against 47% for Gd-DTPA (figure IV).

group located on the ethylenic bridge indeed reduces the accessibility of Zn²⁺ and makes the structure of the complex more rigid, both these effects decrease the release of Gd³⁺ 5500 minutes, the ratio of R₁^P is about 73% for MS-325, 71% for (S) Gd-C₄Bz-DTPA and 65% for (S) Gd-EOB-DTPA (figure V). The sterical hindrance induced by the C-functionalized Gd-DTPA derivatives (figure II) are characterized by a kinetics of transmetallation slower than for the parent compound Gd-DTPA: after a period of approx.

complexes can be classified according to their ratio R₁^p (t=5000 min) / R₁^p (t=0 min): With the exception of Gd-DTPA-BBMA, all the bisamide compounds (figure III) show faster and more extensive transmetallation than Gd-DTPA (figure VI). These

- ratio < 0.2 : Gd-DTPA-BA ; Gd-DTPA-BMA ; Gd-DTPA-BHA</p>
- -0.2 < ratio < 0.3 : Gd-DTPA-BiBA
- 0.3 < ratio < 0.4 : Gd-DTPA-BcHA
- ratio > 0.6 : Gd-DTPA-BBMA

substituents become bulkier indicating a favorable effect of sterical hindrance with respect to the kinetics of transmetallation. The substitution of oxygen by nitrogen thus seems to facilitate the exchange of the Gd³⁺ ion by the Zn²⁺ ion. In the bisamide series, a slower decomplexation occurs when the

-⊕ Gd-DTPA-BBMA
-₩ Gd-DTPA-Bd-A
-₩ Gd-DTPA-BBA
-₩ Gd-DTPA-BBA
-₩ Gd-DTPA-BBA Gd-DTPABMA

CONCLUSIONS Figure IV

Figure V

Figure VI

2000

500 6000

Time (min) 3000 4000

gadolinium complexes of open chain ligands like those of DTPA derivatives are characterized by a high susceptibility to transmetallation. C-functionalized DTPA are less sensitive to this process than the parent compound. Finally, the presence of larger substituents on bisamide derivatives increases their resistance against transmetallation by The twelve member-ring macrocyclic gadolinium complexes are very stable towards transmetallation by zinc ions. On the contrary, and in the same experimental conditions,

REFERENCES:

- [1] M. Brechbiel, O. Gansow, R. Atcher, J. Schlom, J.Esteban, D. Simpson and D. Colcher, Inorg. Chem., 25, 2772-2781 (1986)
- [2] F. Copoix, M.Sc. Thesis, University of Mons-Hainaut (1998)